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Purpose of review

The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by
cessation of physical loading. There is a need to recreate the anabolic effects of loading on the
musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to
be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle
strength.

Recent findings

Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone
strength by increasing bone formation and decreasing bone resorption. There is also evidence that
vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging.
Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem
cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration
signals.

Summary

Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and
pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns,
and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail
individuals or high-intensity vibration (>1g) marketed as a training exercise.
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INTRODUCTION

Conditions associated with reduced mobility and
systemic decline lead to failure of the musculoske-
letal system with loss of skeletal strength and muscle
dysfunction, significantly compromising measures
of life quality. Both bone and muscle perceive and
respond to local dynamic loading, building form,
and strength to support function [1]. The need to
mechanically load the skeleton translates to ‘use it
or lose it’. As such, pathological or occupational
reductions in functional loading manifest as bone
becomes more susceptible to fracture [2]. To avoid
off-target pharmacological complications, it makes
more sense to physically target the musculoskeletal
system: mechanical signals present unique advan-
tages in that effects are both self-targeting and self-
optimizing. However, typical exercise regimens
(running or walking) are difficult for frail individ-
uals. Vibration therapy delivered as a low-magni-
tude, high-frequency stimulus [‘LIV’ defined as <1
gravity (g¼ acceleration of 9.81 m/s2, frequency
>30 Hz)] offers a means to deliver relevant mechan-
ical signals safely to patients who can not exercise to
build musculoskeletal strength [3]. Low intensity
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vibration (LIV), as compared with devices that
deliver high-magnitude signals (>1g), provides
different levels of applicability and safety.

What types of mechanical signals does the
skeleton perceive as anabolic? Bone formation
requires dynamic mechanical loading, with varied
time between loading bouts [4]. In contrast, static
loads induce bone resorption [5]. Dynamic load has
both magnitude and frequency components within
the bone matrix [6]. Large-magnitude strain can
induce tissue responses directly via matrix defor-
mation or indirectly through fluid shear, pressure,
or streaming potentials [7]. The skeleton experi-
ences relatively few low-frequency (1–3 Hz), large-
magnitude (2000–3000 microstrain) events
thorized reproduction of this article is prohibited.
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KEY POINTS

� Low-intensity, high-frequency vibration therapy is a
promising exercise analogue to stimulate anabolic
responses of the musculoskeletal system.

� Until it is clear that the benefits of high-intensity
vibration outweigh its adverse effect consequences,
physicians and other healthcare providers should
consider low-intensity (<1g) treatments for their
patients.

� Additional studies are needed to identify the most
effective intensity, frequency, and duration of the
vibration treatments and to investigate its use to
enhance other physical/exercise and pharmacological
therapies.

� Vibration therapy may cause a more pronounced
anabolic effect in children, possibly due to stimulation
of osteogenesis from the increased pool of
mesenchymal progenitor cells in younger individuals.

� Low-intensity vibration therapy likely targets multiple
tissues within the neuromuscular and musculoskeletal
systems, leading to an additive anabolic effect, thus
improving overall musculoskeletal health.
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FIGURE 1. Cellular targets of vibration. The physiological
effects of vibration are mediated by individual cellular
actions. Low-magnitude mechanical signals target many cell
types including mesenchymal stem cells, osteoblasts,
osteocytes, adipocytes, osteoclasts, myocytes, and neurons.
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throughout the day but is bombarded with persist-
ent high-frequency (10–50 Hz), low-magnitude sig-
nals [8]. These constant small signals are generated
from postural muscle contractions; these contrac-
tions decrease with sarcopenia or disuse muscle
atrophy [9]. LIV therapy replicates these high-
frequency, low-magnitude signals to improve bone
strength [10].

Vibration therapy is directed at processes acti-
vated by direct mechanical loading [7] (Fig. 1),
including the progenitor for osteoblasts, osteocytes,
and myocytes, the mesenchymal stem cell (MSC).
Vibration directs osteogenic differentiation [11]
while restricting MSC adipogenic commitment
[12]. Although little is known regarding effects of
vibration on osteocytes embedded in mineralized
tissue, vibration of osteocytes in culture decreased
expression of osteoclast-forming RANKL [13], which
rises during unloading [14], and increased cell com-
munication [15

&

]. Also, the hematopoietic-derived
osteoclast is mechanically responsive [16] and
vibration reduced osteoclast formation [17].

Anabolic effects of low-intensity mechanical
signals on bone may be induced indirectly via extra-
skeletal tissues. Enhanced muscle strength, size, and
performance were observed in humans [18] and
animals [19] following vibration, possibly due to
increased neuromuscular efficiency [18]. Vibration
enhances expression of anabolic genes in tendons
[20]. Other studies suggest that bone density
opyright © Lippincott Williams & Wilkins. Unautho
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increases due to vibration’s repression of fat devel-
opment [12,21]. The molecular mechanisms con-
trolling these responses may be due to enhanced
b-catenin [12] or enhanced gap junction communi-
cation [15

&

]. Signal activation may be induced via
acceleration of the cell nucleus [15

&

], independently
of matrix strain [12] or fluid shear [22,23].
HUMAN STUDIES

Whole-body vibration (WBV) is a promising non-
pharmacological treatment strategy to improve
bone quality, strength, and posture in patients
who are unable to perform high-impact exercises
(Fig. 2). Available human trials are complicated
because of multiple vibration parameters ranging
from high (3–5g) to low intensity (<1g). Although
high-intensity vibration devices are frequently
found in gyms and marketed as workout machines,
it is unsuited for frail patients. WBV regimens need
to be optimized for anabolic responses while min-
imizing adverse effects.

A double-placebo controlled study evaluated the
effects of low-intensity WBV on bone density in
humans; postmenopausal women were randomized
to receive 2�10 min LIV (0.2g, 30 Hz) or an inactive
placebo plate [24]. Women with high adherence
showed a benefit of LIV: the control group lost
2% femoral neck bone mineral density (BMD)
rized reproduction of this article is prohibited.
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FIGURE 2. Physiological responses of whole-body vibration. Delivery of low-magnitude mechanical signals mimic aspects of
loading exercise, providing direct benefits to the skeleton, but also indirectly improves musculoskeletal outcomes including
balance, posture, and muscle strength. These additional benefits feed back to further enhance skeletal strength.
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whereas the treatment group gained 0.04%, a
2.17% relative BMD increase. Similar LIV signals
were studied over 1 year in premenopausal women
with low Z-scores and positive fracture history [25].
Quantitative computed tomography showed that
women in the active LIV group gained 2% trabecular
and cortical bone compared with the inactive group.
Imaging also showed LIV caused a 4.9% increase in
paraspinous muscle area.

Several subsequent studies confirmed improve-
ment in BMD with WBV; however, these studies are
of varying quality and design. In some cases, high-
intensity vibration was used and was linked to back
and joint pain. A nonrandomized controlled study
of 116 postmenopausal women with osteoporosis
who received high-intensity vibration (30 Hz, 5 mm
amplitude¼18g) for 10 min 5 days a week increased
lumbar and femoral neck BMD by 4.3 and 3.2%,
respectively [26]. Another high-magnitude 30 Hz,
3.2g study dosed for 5 min thrice weekly showed a
2% significant increase in lumbar spine BMD in
postmenopausal women in which controls lost bone
over 6 months [27].

More recently, in a randomized controlled trial
[28], 202 osteopenic postmenopausal women were
randomized to LIV (0.3g, 37 or 90 Hz) for 20 min
daily for 1 year. No significant differences were
found in the primary outcome of tibial trabecular
volumetric BMD or in secondary measures such as
femoral neck, total hip, or lumbar spine BMD [28].
However, compliance with LIV of 65–79% was poor.
Limitations included low adherence, lack of very
low bone density, and the fact that the placebo
group did not lose significant bone density over
the year study.
Copyright © Lippincott Williams & Wilkins. Unau
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Several studies evaluated the ability of WBV to
augment the anabolic effects of dynamic exercise.
Gomez-Cabello et al. [29] randomized 49 elderly
men and women to receive either WBV (35 Hz,
�16g) while completing a trained squat three times
a week for 11 weeks or to a control group receiving
no vibration or exercise. At the end of the short
study, there were no changes in dual-energy X-ray
absorptiometry scan measures. An 18-month study
showed that vibration therapy combined with low-
impact activity enhanced the effect of training to
increase lumbar BMD [30]. Interestingly, the
vibration group had decreased falls as well. Another
recent study [31] in seniors combined 6-month
vibration therapy (44–55 Hz, 0.5g) with a tilting
angle exercise for 20 min thrice weekly demon-
strated LIV-induced BMD increases that were higher
in women compared with men, and in participants
with osteoporosis, compared with those without
low bone density.

The effects of LIV have been studied in children
with immobility-associated disability. Children
with disabling conditions randomized to LIV
(90 Hz, 0.3g, 10 min/day) demonstrated a 6.3%
increase, whereas those in the control group had a
decrease of 12% in BMD [32]. In children with
osteogenesis imperfecta, high-intensity vibration
(15–20 Hz, 1–2 mm amplitude, �12g) combined
with tilt-table exercise induced improvements in
muscle and ground reaction forces [33]. Children
with idiopathic scoliosis may also benefit: 149 girls,
15–25 years old with adolescent idiopathic scoliosis
with Z-scores below �1, were randomized to low-
magnitude, high-frequency WBV (32–37 Hz, 0.3g)
for 20 min/day, 5 days weekly for 12 months [34].
thorized reproduction of this article is prohibited.
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The treatment group showed significant increases in
femoral neck BMD from baseline (0.015–2.15g/cm2)
and an increase in lumbar spine bone compared
with controls. These studies suggest that vibration
has greater anabolic potential in the growing
skeleton, perhaps by altering the outcome of a more
robust MSC pool.

The Gilsanz et al. study [25] reviewed above
suggested that muscles in young females responded
to LIV. In a post-hoc analysis of girls who used LIV
for at least 2 min daily, an even higher influence
on muscle and bone formation was seen. Even in
postmenopausal women, LIV enhanced effects of a
squat/lunge resistance training program; simul-
taneous treatment with LIV (35–40 Hz, 2–5g)
induced 15% increases in knee strength [35]. Other
studies support that WBV has the potential to
increase effects of exercise training. Four months
of high-intensity vibration (30–40 Hz, 2–2.8g) com-
bined with resistance exercises in postmenopausal
women enhanced muscular strength compared
with resistance training alone at multiple sites
[36]. Further, WBV training combined with exercise
improved strength and balance in stroke patients.
After 6 weeks, patients receiving WBV (35–40 Hz,
1.7–2.5 mm, �16g) for 30–60 s, thrice weekly had
significant improvements in lower limb strength
and postural control compared with non-LIV indi-
viduals [37

&

]. At this point, however, we would
caution that there is no evidence that high-intensity
vibration performs better than low-intensity
vibration, and may lead to adverse effects.

LIV may also be beneficial for postural instabil-
ity due to sarcopenia or degraded neuromuscular
control due to immobility [38]. LIV (39 Hz, 0.3–0.5g)
was studied in healthy adults subjected to 90 days of
head-down tilt bed rest. Postural stability, measured
by plantar-based center displacement and velocity,
showed LIV treatment defended against a loss of
stability due to bed rest. Overall, LIV may limit
musculoskeletal degeneration caused by physical
inactivity, which leads to falls and fracture.
ANIMAL STUDIES

Animal studies proved the efficacy of LIV on bone
endpoints by avoiding human study limitations of
age, sex, hormonal status, and comorbidity. For
instance, adult sheep exposed to daily LIV (30 Hz,
0.3g, 20 min) showed a 34% increase in femoral
trabecular bone by micro-computed tomography
and histology at 1 year [39,40]. In mice, only 3 weeks
of LIV increased trabecular bone, with a greater
response to the 0.3g, rather than 0.6g, parameter [41].

Interestingly, genetic variation within mice
also modulates the sensitivity of the skeleton to
opyright © Lippincott Williams & Wilkins. Unautho

4 www.co-endocrinology.com
mechanical stimuli. Mouse strains display varying
responses to anabolic LIV treatment and the cata-
bolic effects of disuse (unloading). In the ‘low
density’ C57BL/6J mouse, hind limb unloading
did not affect bone formation rate (BFR), and LIV
induced significant increases in the BFR of both
loaded and unloaded hind limbs. Unloading in
the ’mid-density’ BALB/cByJ mouse significantly
reduced BFR and this was ameliorated by LIV.
Finally, the ‘high-density’ C3H/HeJ mice did not
respond to either disuse or LIV [42]. This suggests
that genetics influence the skeletal response to
physical cues and may partially explain why
vibration is not universally effective in humans.

Can LIV prevent estrogen deficiency bone loss?
Treatment with LIV for 28 days following ovari-
ectomy in mature rats led to a 159% increase in
trabecular bone formation [6]. Further, in ovari-
ectomized rat bone, LIV not only increased perios-
teal BFR but also decreased endocortical resorption,
resulting in improved biomechanical strength [43].

Animal studies reinforce that specific genetic
mutations leading to skeletal fragility also might
be amenable to vibration therapy. The severe bone
fragility of osteogenesis imperfecta is associated
with overactive bone remodeling with disorganized
woven bone, reduced BMD, and decreased mechan-
ical properties [44]. Some improvements in skeletal
endpoints have been achieved with bisphospho-
nates [45], but long-term therapy is concerning in
growing children [46]. An osteogenesis imperfecta
mouse model provides promising results for the use
of vibration to improve bone properties. LIV treat-
ment (0.3g, 45 Hz, 15 min, 5 day/week) resulted in
significantly improved femoral and tibial cortical
area and thickness compared with sham controls
after 5 weeks, with improved trends in trabecular
bone [47

&&

].
Vibration therapy may also be an effective

adjunct to pharmacological interventions aimed
at improving low bone mass. A recent study com-
pared alendronate treatment in combination with
LIV (0.3g, 45–55 Hz, 20 min/day, five times/week).
After 3 months, alendronate alone induced greater
improvements in trabecular bone compared with
LIV alone; however, combining alendronate and
LIV resulted in the greatest anabolic response
[48

&&

]. This study demonstrates the potential for
LIV to augment drug treatments targeting bone.

Fracture healing may also be improved by LIV.
Individuals with low bone density or poor bone
quality resulting from hormonal imbalances or
genetic mutations have higher risk for fracture
[49]. Bone fractures, especially in the elderly, lead
to severe functional and economic burdens [50]. LIV
can be delivered to bed-bound patients, at risk for
rized reproduction of this article is prohibited.

Volume 21 � Number 00 � Month 2014



CE: Alpana; MED/210605; Total nos of Pages: 7;

MED 210605

Peak

Time

Amplitude

Period duration

D
is

pl
ac

em
en

t

FIGURE 3. Vibration dynamics. Displacement (amplitude) of the vibration plate, which when combined with the sinusoidal
period duration (frequency, Hz) can be translated into acceleration (g-force). Vibration can be dosed horizontally with
acceleration directed upward through the hips, or in side-to-side alternating vibrations in which forces are buffered by joints.
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fracture disunion, as it is well known that loading is
critical to achieving successful fracture remodeling.
Fracture repair was studied in ovariectomy (OVX)
rats: LIV (35–90 Hz, 15 min/daily) resulting in
improved callus density, enlarged callus area and
width, accelerated osteotomy bridging, upregulated
osteocalcin expression, and suppressed osteoclast
activity at 30 days [51]. Another OVX rat tibial
osteotomy fracture model combined LIV with either
estrogen or raloxifene treatment; combination
therapy with LIV and estrogens resulted in improved
stiffness and increased endosteal and trabecular
bone densities compared with LIV or raloxifene
alone [52]. These studies suggest that LIV can
enhance current pharmacological interventions
for fracture healing.
DEVICES

A significant problem with the scientific literature
of vibration therapy, as well as practitioner and
patient comprehension, is the availability of
multiple devices from which clinical information
has been collected. These devices deliver different
directionality (horizontal displacement from side-
to-side or vertically), amplitudes (displacements
resulting in gravitational force from less than 1 to
greater than 15g), and frequency (5–90 Hz) [53]
(Fig. 3). Some high-intensity devices are marketed
as workout or slimming devices, and can increase
muscle damage and even generate unwanted
Copyright © Lippincott Williams & Wilkins. Unau
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rotational movements in joints, which buffer
impacts of loading [54]. In contrast, low-intensity
vertical vibration devices are well tolerated [32,34].

A Google search brings up more than 50 devices
that deliver WBV. Most of these provide infor-
mation regarding displacement and frequency.
Importantly, the key index of safety (determined
by occupational safety and health administration) is
acceleration, or g-force. g-force is derived from a
complex product of displacement and frequency
(for example, displacing 1 mm at 10 Hz results in
0.4g, but increasing frequency to 50 Hz results in 10g
acceleration). Most vibration devices can provide
both high-magnitude (>1g) and low-magnitude
(<1g) forces, but those marketed as workout
adjuncts generally deliver forces greater than 4g.
Such exercise devices are not appropriate for
elderly or frail patients in whom the endpoint is
improving bone strength [55]. When selecting a
treatment regimen, we would recommend that
physicians and rehabilitation specialists use devices
that clearly report the vibration parameters and that
deliver low-intensity (<1g), horizontal displace-
ments at high frequencies (30–100 Hz).
CONCLUSION

Skeletal disuse leads to a wide array of consequences
in the musculoskeletal system. Providing noninva-
sive, anabolic mechanical signals to mimic exercise
in bone presents an attractive alternative to
thorized reproduction of this article is prohibited.
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pharmacological treatments for osteoporosis.
Although drug interventions have relied almost
exclusively on preventing bone resorption, low-
intensity vibration initiates anabolic responses
and counteracts catabolic signals. Furthermore,
the musculoskeletal system’s self-targeting response
to mechanical signals avoids off-target effects and
bestows additional benefits, including improved
postural control and neuromuscular activation.
These positive influences are at least partly con-
veyed through mechanical regulation of mesenchy-
mal stem cells, which provide progenitors for bone
and muscle growth. Although a uniform consensus
regarding the most effective anabolic treatment reg-
imen has not been reached, delivering low-magni-
tude mechanical signals is an appealing method to
supply an exercise surrogate for those who are oth-
erwise unable to load their skeletons.
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